Geometric combinatorics of Weyl groupoids
نویسندگان
چکیده
We extend properties of the weak order on finite Coxeter groups to Weyl groupoids admitting a finite root system. In particular, we determine the topological structure of intervals with respect to weak order, and show that the set of morphisms with fixed target object forms an ortho-complemented meet semilattice. We define the Coxeter complex of a Weyl groupoid with finite root system and show that it coincides with the triangulation of a sphere cut out by a simplicial hyperplane arrangement. As a consequence, one obtains an algebraic interpretation of many hyperplane arrangements that are not reflection arrangements.
منابع مشابه
Weyl Quantization from Geometric Quantization
In [23] a nice looking formula is conjectured for a deformed product of functions on a symplectic manifold in case it concerns a hermitian symmetric space of non-compact type. We derive such a formula for simply connected symmetric symplectic spaces using ideas from geometric quantization and prequantization of symplectic groupoids. We compute the result explicitly for the natural 2-dimensional...
متن کاملWeyl Groupoids with at Most Three Objects
We adapt the generalization of root systems of the second author and H. Yamane to the terminology of category theory. We introduce Cartan schemes, associated root systems and Weyl groupoids. After some preliminary general results, we completely classify all finite Weyl groupoids with at most three objects. The classification yields that there exist infinitely many “standard”, but only 9 “except...
متن کاملGrothendieck Rings of Basic Classical Lie Superalgebras
The Grothendieck rings of finite dimensional representations of the basic classical Lie superalgebras are explicitly described in terms of the corresponding generalised root systems. We show that they can be interpreted as the subrings in the weight group rings invariant under the action of certain groupoids, which we call Weyl groupoids.
متن کاملNo : 15 Title : ‘ Quantization of Planck ’ S Constant
This paper is about the role of Planck’s constant, h̄, in the geometric quantization of Poisson manifolds using symplectic groupoids. In order to construct a strict deformation quantization of a given Poisson manifold, one can use all possible rescalings of the Poisson structure, which can be combined into a single “Heisenberg-Poisson” manifold. The new coordinate on this manifold is identified ...
متن کاملTannaka-krein Duality for Compact Groupoids I, Representation Theory
In a series of papers, we have shown that from the representation theory of a compact groupoid one can reconstruct the groupoid using the procedure similar to the Tannaka-Krein duality for compact groups. In this part we study continuous representations of compact groupoids. We show that irreducible representationshave finite dimensional fibres. We prove the Schur’s lemma, Gelfand-Raikov theore...
متن کامل